Completely Integrable Differential Systems Are Essentially Linear
نویسندگان
چکیده
Let ẋ = f(x) be a C autonomous differential system with k ∈ N ∪ {∞, ω} defined in an open subset Ω of R. Assume that the system ẋ = f(x) is C completely integrable, i.e. there exist n−1 functionally independent first integrals of class C with 2 ≤ r ≤ k. If the divergence of system ẋ = f(x) is non–identically zero, then any Jacobian multiplier is functionally independent of the n − 1 first integrals. Moreover the system ẋ = f(x) is Cr−1 orbitally equivalent to the linear differential system ẏ = y in a full Lebesgue measure subset of Ω. For Darboux and polynomial integrable polynomial differential systems we characterize their type of Jacobian multipliers.
منابع مشابه
Exact Solutions of Completely Integrable Systems and Linear ODE's Having Elliptic Function Coefficients
We present an algorithm for finding closed form solutions in elliptic functions of completely integrable systems. First we solve the linear differential equations in spectral parameter of Hermite-Halphen type. The integrability condition of the pair of equations of HermiteHalphen type gives the large family of completely integrable systems of Lax-Novikov type. This algorithm is implemented on t...
متن کاملTableaux over Lie algebras, integrable systems and classical surface theory
Starting from suitable tableaux over finite dimensional Lie algebras, we provide a scheme for producing involutive linear Pfaffian systems related to various classes of submanifolds in homogeneous spaces which constitute integrable systems. These include isothermic surfaces, Willmore surfaces, and other classical soliton surfaces. Completely integrable equations such as the G/G0-system of Terng...
متن کاملRelationships between Darboux Integrability and Limit Cycles for a Class of Able Equations
We consider the class of polynomial differential equation x&= , 2(,)(,)(,)nnmnmPxyPxyPxy++++2(,)(,)(,)nnmnmyQxyQxyQxy++&=++. For where and are homogeneous polynomials of degree i. Inside this class of polynomial differential equation we consider a subclass of Darboux integrable systems. Moreover, under additional conditions we proved such Darboux integrable systems can have at most 1 limit cycle.
متن کاملar X iv : m at h / 04 12 16 9 v 3 [ m at h . D G ] 2 A ug 2 00 6 TABLEAUX OVER LIE ALGEBRAS , INTEGRABLE SYSTEMS , AND CLASSICAL SURFACE THEORY
Starting from suitable tableaux over finite dimensional Lie algebras, we provide a scheme for producing involutive linear Pfaffian systems related to various classes of submanifolds in homogeneous spaces which constitute integrable systems. These include isothermic surfaces, Willmore surfaces, and other classical soliton surfaces. Completely integrable equations such as the G/G0-system of Terng...
متن کاملar X iv : m at h / 04 12 16 9 v 1 [ m at h . D G ] 8 D ec 2 00 4 TABLEAUX OVER LIE ALGEBRAS , INTEGRABLE SYSTEMS , AND CLASSICAL SURFACE THEORY
Starting from suitable tableaux over finite dimensional Lie algebras, we provide a scheme for producing involutive linear Pfaffian systems related to various classes of submanifolds in homogeneous spaces which constitute integrable systems. These include isothermic surfaces, Willmore surfaces, projective minimal surfaces, and other classical soliton surfaces. Completely integrable equations suc...
متن کامل